Time Stepping Via One-Dimensional Padé Approximation
نویسندگان
چکیده
The numerical solution of time-dependent ordinary and partial differential equations presents a number of well known difficulties—including, possibly, severe restrictions on time-step sizes for stability in explicit procedures, as well as need for solution of challenging, generally nonlinear systems of equations in implicit schemes. In this note we introduce a novel class of explicit methods based on use of one-dimensional Padé approximation. These schemes, which are as simple and inexpensive per time-step as other explicit algorithms, possess, in many cases, properties of stability similar to those offered by implicit approaches. We demonstrate the character of our schemes through application to notoriously stiff systems of ODEs and PDEs. In a number of important cases, use of these algorithms has resulted in orders-of-magnitude reductions in computing times over those required by leading approaches.
منابع مشابه
Some Remarks on Padé-approximations
Padé approximations are widely used to approximate a dead-time in continuous control systems. It provides a finite-dimensional rational approximation of a dead-time. However, the standard Padé approximation (recommended in many textbooks) with equal numeratorand denominator degree, exhibits a jump at time t=0. This is highly undesirable in simulating dead-times. To avoid this phenomena we shall...
متن کاملAnalysis of Magneto-hydrodynamics Jeffery-Hamel Flow with Nanoparticles by Hermite-Padé Approximation
The combined effects of nanoparticle and magnetic field on the nonlinear Jeffery-Hamel flow are analyzed in the present study. The basic governing equations are solved analytically to nonlinear ordinary differential equation using perturbation method together with a semi-numerical analytical technique called Hermite- Padé approximation. The obtained results are well agreed with that of the Adom...
متن کاملADOMIAN DECOMPOSITION METHOD AND PADÉ APPROXIMATION TO DETERMINE FIN EFFICIENCY OF CONVECTIVE SOLAR AIR COLLECTOR IN STRAIGHT FINS
In this paper, the nonlinear differential equation for the convection of the temperature distribution of a straight fin with the thermal conductivity depends on the temperature is solved using Adomian Decomposition Method and Padé approximation(PADM) for boundary problems. Actual results are then compared with results obtained previously using digital solution by Runge–Kuttamethod and a diffe...
متن کاملMultivariate Integral Perturbation Techniques - I (Theory)
We present a quasi-analytic perturbation expansion for multivariate N dimensional Gaussian integrals. The perturbation expansion is an infinite series of lower-dimensional integrals (one-dimensional in the simplest approximation). This perturbative idea can also be applied to multivariate Student-t integrals. We evaluate the perturbation expansion explicitly through 2 order, and discuss the con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 30 شماره
صفحات -
تاریخ انتشار 2007